Анализ поведенческих данных на R и Python

Описание и характеристики

Задействуйте всю мощь поведенческих данных в своей компании, используя инструменты, специально разработанные для их анализа. Общепринятые алгоритмы науки о данных и инструменты предсказательной аналитики трактуют данные о поведении клиентов, такие как клики на веб-сайте или покупки в супермаркете, аналогично любым другим данным. Однако в этой книге представлены мощные методы, специально приспособленные для анализа поведенческих данных.

Усовершенствованный экспериментальный дизайн позволяет вам получать максимальную отдачу от ваших A/B-тестов, тогда как причинно-следственные диаграммы позволяют выявлять причины поведений, даже если вы не можете проводить эксперименты.

Книга написана в доступном стиле для исследователей данных, бизнес-аналитиков и бихевиористов. Приведены полные примеры и упражнения на языках R и Python, которые помогут вам получать более глубокую информацию о ваших данных — и не откладывая в долгий ящик.
ID товара 2877807
Издательство ДМК Пресс
Серия O`Reilly
Год издания
ISBN 978-5-9706-0992-7
Количество страниц 378
Размер 2.4x17x24
Тип обложки Твёрдый переплёт
Тираж 200
Вес, г 699
Возрастные ограничения 12+
3 459 ₽
+ до 518 бонусов
Осталось мало

В магазины сети, бесплатно

ЗавтраАдреса магазинов

Другие способы доставки
3

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
4.4
5 оценок
0
0
0
3
2
Задействуйте всю мощь поведенческих данных в своей компании, используя инструменты, специально разработанные для их анализа. Общепринятые алгоритмы науки о данных и инструменты предсказательной аналитики трактуют данные о поведении клиентов, такие как клики на веб-сайте или покупки в супермаркете, аналогично любым другим данным. Однако в этой книге представлены мощные методы, специально приспособленные для анализа поведенческих данных.

Усовершенствованный экспериментальный дизайн позволяет вам получать максимальную отдачу от ваших A/B-тестов, тогда как причинно-следственные диаграммы позволяют выявлять причины поведений, даже если вы не можете проводить эксперименты.

Книга написана в доступном стиле для исследователей данных, бизнес-аналитиков и бихевиористов. Приведены полные примеры и упражнения на языках R и Python, которые помогут вам получать более глубокую информацию о ваших данных — и не откладывая в долгий ящик.