Числовая асимметрия в прикладной математике

Описание и характеристики

Фракталы, р-адические числа, апории Зенона, сложные системы.
В книге выдвинут постулат о функциональной асимметрии природы, образованной двумя универсальными формообразующими процессами - сжатия и расширения, непрерывности и разрывности. Обоснована двойственность её фрактальной геометрии. В качестве формального аналога двойственности рассмотрена модель числовой асимметрии - объединения вещественных и р-адических чисел в единую самодвойственную систему. Показано, что она логически связывает различные математические результаты о двойственности, которые согласуются с бинарным характером естественных наук и диалектикой общей теории систем. Апории Зенона рассмотрены с точки зрения приложений математики - как тест на её адекватность естествознанию. Предложено единое толкование всех апорий с точки зрения числовой асимметрии. Рассмотрены возможности согласования математических понятий с основными понятиями языка, биологии, сознания, физики и религиозного мировоззрения.
Книга адресована прикладным математикам, всем исследователям, применяющим математику и системные идеи в своей работе.
ID товара 2514112
Издательство Дельфис
Год издания
ISBN 978-5-93366-075-0
Количество страниц 416
Размер 1.8x14x21
Тип обложки Мягкий переплёт
Вес, г 409
519 ₽
+ до 77 бонусов
Последний экземпляр

В магазины сети, бесплатно

ЗавтраАдреса магазинов

Другие способы доставки
1
Наличие в магазинах
за 479 ₽
Москва Нет в наличии
Есть в других городах, 1 магазин 
Посмотреть наличие

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
1.0
1 оценка
1
0
0
0
0
Фракталы, р-адические числа, апории Зенона, сложные системы.
В книге выдвинут постулат о функциональной асимметрии природы, образованной двумя универсальными формообразующими процессами - сжатия и расширения, непрерывности и разрывности. Обоснована двойственность её фрактальной геометрии. В качестве формального аналога двойственности рассмотрена модель числовой асимметрии - объединения вещественных и р-адических чисел в единую самодвойственную систему. Показано, что она логически связывает различные математические результаты о двойственности, которые согласуются с бинарным характером естественных наук и диалектикой общей теории систем. Апории Зенона рассмотрены с точки зрения приложений математики - как тест на её адекватность естествознанию. Предложено единое толкование всех апорий с точки зрения числовой асимметрии. Рассмотрены возможности согласования математических понятий с основными понятиями языка, биологии, сознания, физики и религиозного мировоззрения.
Книга адресована прикладным математикам, всем исследователям, применяющим математику и системные идеи в своей работе.