Числовая асимметрия в прикладной математике
Описание и характеристики
В книге выдвинут постулат о функциональной асимметрии природы, образованной двумя универсальными формообразующими процессами - сжатия и расширения, непрерывности и разрывности. Обоснована двойственность её фрактальной геометрии. В качестве формального аналога двойственности рассмотрена модель числовой асимметрии - объединения вещественных и р-адических чисел в единую самодвойственную систему. Показано, что она логически связывает различные математические результаты о двойственности, которые согласуются с бинарным характером естественных наук и диалектикой общей теории систем. Апории Зенона рассмотрены с точки зрения приложений математики - как тест на её адекватность естествознанию. Предложено единое толкование всех апорий с точки зрения числовой асимметрии. Рассмотрены возможности согласования математических понятий с основными понятиями языка, биологии, сознания, физики и религиозного мировоззрения.
Книга адресована прикладным математикам, всем исследователям, применяющим математику и системные идеи в своей работе.
ID товара
2514112
Издательство
Дельфис
Год издания
2016
ISBN
978-5-93366-075-0
Количество страниц
416
Размер
1.8x14x21
Тип обложки
Мягкий переплёт
Вес, г
409
519 ₽
+ до 77 бонусов
Последний экземпляр
В магазины сети, бесплатно
ЗавтраАдреса магазинов
Другие способы доставки
Наличие в магазинах
за 479 ₽
Москва
Нет в наличии
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
1.0
Фракталы, р-адические числа, апории Зенона, сложные системы.
В книге выдвинут постулат о функциональной асимметрии природы, образованной двумя универсальными формообразующими процессами - сжатия и расширения, непрерывности и разрывности. Обоснована двойственность её фрактальной геометрии. В качестве формального аналога двойственности рассмотрена модель числовой асимметрии - объединения вещественных и р-адических чисел в единую самодвойственную систему. Показано, что она логически связывает различные математические результаты о двойственности, которые согласуются с бинарным характером естественных наук и диалектикой общей теории систем. Апории Зенона рассмотрены с точки зрения приложений математики - как тест на её адекватность естествознанию. Предложено единое толкование всех апорий с точки зрения числовой асимметрии. Рассмотрены возможности согласования математических понятий с основными понятиями языка, биологии, сознания, физики и религиозного мировоззрения.
Книга адресована прикладным математикам, всем исследователям, применяющим математику и системные идеи в своей работе.
В книге выдвинут постулат о функциональной асимметрии природы, образованной двумя универсальными формообразующими процессами - сжатия и расширения, непрерывности и разрывности. Обоснована двойственность её фрактальной геометрии. В качестве формального аналога двойственности рассмотрена модель числовой асимметрии - объединения вещественных и р-адических чисел в единую самодвойственную систему. Показано, что она логически связывает различные математические результаты о двойственности, которые согласуются с бинарным характером естественных наук и диалектикой общей теории систем. Апории Зенона рассмотрены с точки зрения приложений математики - как тест на её адекватность естествознанию. Предложено единое толкование всех апорий с точки зрения числовой асимметрии. Рассмотрены возможности согласования математических понятий с основными понятиями языка, биологии, сознания, физики и религиозного мировоззрения.
Книга адресована прикладным математикам, всем исследователям, применяющим математику и системные идеи в своей работе.