Числовые системы: Элементы теории множеств и алгебры. Натуральные числа. Целые числа. Рациональные ч

Этот товар закончился.

Описание и характеристики

В настоящей работе приводится аксиоматическое построение систем натуральных, целых, рациональных, действительных и комплексных чисел. Показано, как из предлагаемой системы аксиом выводятся утверждения, соответствующие интуитивным представлениям читателя о свойствах данной числовой системы. В частности, доказаны основные свойства отношения делимости целых чисел. В предположении непротиворечивости аксиоматики натуральных чисел доказывается непротиворечивость всех остальных систем аксиом, а именно: показано, как, располагая моделью для натуральных чисел, построить последовательно модели для целых, рациональных, действительных и комплексных чисел. В каждом случае установлена также единственность модели. При формулировке аксиом и доказательстве всех утверждений используются язык и методы современной алгебры; подробному изложению необходимых сведений из алгебры и теории множеств посвящен первый, вводный, параграф пособия.
Книга предназначена для преподавателей и студентов математических факультетов университетов.
ID товара 2687989
Издательство Ленанд
Год издания
ISBN 978-5-9710-5365-1
Количество страниц 176
Размер 0.8x14.6x21.6
Тип обложки Мягкий переплёт
Вес, г 200

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В настоящей работе приводится аксиоматическое построение систем натуральных, целых, рациональных, действительных и комплексных чисел. Показано, как из предлагаемой системы аксиом выводятся утверждения, соответствующие интуитивным представлениям читателя о свойствах данной числовой системы. В частности, доказаны основные свойства отношения делимости целых чисел. В предположении непротиворечивости аксиоматики натуральных чисел доказывается непротиворечивость всех остальных систем аксиом, а именно: показано, как, располагая моделью для натуральных чисел, построить последовательно модели для целых, рациональных, действительных и комплексных чисел. В каждом случае установлена также единственность модели. При формулировке аксиом и доказательстве всех утверждений используются язык и методы современной алгебры; подробному изложению необходимых сведений из алгебры и теории множеств посвящен первый, вводный, параграф пособия.
Книга предназначена для преподавателей и студентов математических факультетов университетов.