Элементы комбинаторной и дифференциальной топологии

Описание и характеристики

Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.

Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.

Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Первое издание книги вышло в 2004 г.
ID товара 2832700
Издательство МЦНМО
Год издания
ISBN 978-5-4439-0241-8
Количество страниц 360
Размер 1.9x14.5x21.7
Тип обложки Твёрдый переплёт
Тираж 1500
Вес, г 449
519 ₽
+ до 77 бонусов
Последний экземпляр

В магазины сети, бесплатно

ЗавтраАдреса магазинов

Другие способы доставки
1
Наличие в магазинах
за 499 ₽
Москва Нет в наличии
Есть в других городах, 1 магазин 
Посмотреть наличие

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
5.0
1 оценка
0
0
0
0
1
Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.

Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.

Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Первое издание книги вышло в 2004 г.