Грокаем глубокое обучение
-22%
Описание и характеристики
«Грокаем глубокое обучение» научит конструировать нейронные сети с нуля! Эндрю Траск знакомит со всеми деталями и тонкостями этой нелегкой задачи. Python и библиотека NumPy способны научить ваши нейронные сети видеть и распознавать изображения, переводить любые тексты на все языки мира и даже писать не хуже Шекспира!
ID товара
2750038
Издательство
Питер
Серия
Библиотека программиста
Год издания
2024
ISBN
978-5-4461-1334-7
Переводчик
Киселев А.
Количество страниц
352
Размер
1.6x16.5x23.3
Тип обложки
Мягкий переплёт
Тираж
1500
Вес, г
460
Возрастные ограничения
12+
1 124 ₽
1 436 ₽
+ до 168 бонусов
В наличии
В магазины сети, бесплатно
СегодняАдреса магазинов
Другие способы доставки
от 1 249 ₽ сегодня
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
3.6
Алексей
05.06.2023
Введение в сети для внимательных
Плюсы
+Простой текст
+Много примеров
+Некоторые сложные вещи расписаны очень простым языком
+Много примеров
+Некоторые сложные вещи расписаны очень простым языком
Минусы
-Куча опечаток в примерах (10 вместо 100, 0.02 вместо 0.456 и так далее)
Глубокое обучение — это раздел искусственного интеллекта, цель которого научить компьютеры обучаться с помощью нейронных сетей — технологии, созданной по образу и подобию человеческого мозга. Онлайн-переводчики, беспилотные автомобили, рекомендации по выбору товаров именно для вас и виртуальные голосовые помощники — вот лишь несколько достижений, которые стали возможны, благодаря глубокому обучению.
«Грокаем глубокое обучение» научит конструировать нейронные сети с нуля! Эндрю Траск знакомит со всеми деталями и тонкостями этой нелегкой задачи. Python и библиотека NumPy способны научить ваши нейронные сети видеть и распознавать изображения, переводить любые тексты на все языки мира и даже писать не хуже Шекспира!
«Грокаем глубокое обучение» научит конструировать нейронные сети с нуля! Эндрю Траск знакомит со всеми деталями и тонкостями этой нелегкой задачи. Python и библиотека NumPy способны научить ваши нейронные сети видеть и распознавать изображения, переводить любые тексты на все языки мира и даже писать не хуже Шекспира!
Подарили книгу (покупал не знающий человек, зная что я читал когда-то книги этой серии[стоят на полке])
Всегда брал информацию в первоисточниках в виде научных работ/статей/журналов. Решил интереса ради в поездках прочесть книгу.
NumPy без всяких ML либ выбран правильно, так как нужно понимать что происходит внутри. Автор даёт достаточно много полезной информации, которую я получал после набивания кучи шишек и осознание некоторых моментов в работе заняло не один месяц. А тут оно есть (базово, но есть)
Backprop объясняется достаточно лаконично, по крайней мере гораздо лучше, чем во многих откопирайченных источниках русскоязычных, которые слепо копируют инфу друг у друга с наглухо зашитыми в математику сигмоидами (кто поймет тот поймет)
Картинки есть, их много. Когда информативные, когда нет. Чаще все таки информативные)
Но есть одно большое НО! В примерах КУЧА опечаток. Автор говорит одно, а написано другое. Пример - возьмём 10 и умножим на 2. А в примере написано 1*2. Это очень плохо.
Вы напишете код примера, запустите, он выдаст результат по заданным данным. Бац - цифры в книге другие. И вы не будете знать это вы ошиблись или в книге опечатка!
Я не проверял код на корректность, так как мне это не было интересно, но некоторые места пересчитывал с калькулятором, когда явно видел расхождение в цифрах.
Книга пойдет начинающим, но не совсем "нулевым" ребятам. Надо чтобы вы знали векторные и матричные операции, шо такое корреляция и как работают массивы) База простая, но потребуется.
От себя: крайне советую не просто повторять примеры из книги, забивая его в компуктер и ожидая циферок, а посчитать прямой/обратный проход для пары узлов вручную, на листике с калькулятором. Вы гораздо больше поймёте и запомните, нежели просто все скормите Python\'у и через неделю забудете.
И так делать для всего нового в ML, что можно посчитать. Матана там порой очень много и мат.пакетами типа Maple, Matcad, Wolfram Alpha и подобными на работе пользоваться точно придется.
P.s. Конечно если вам нужно просто сделать курсач на TensorFlow или что-нибудь из такого простого, то углубляться в матан совсем не обязательно. Вы быстро разочаруетесь в кажущейся простоте нейронок