Интегрируемые динамические системы с диссипацией. Том 2. Закрепленные маятники разной размерности
Описание и характеристики
Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике закрепленного твердого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций. Получены некоторые обобщения на условия интегрируемости более общих классов неконсервативных динамических систем (динамика четырехмерного и многомерного твердого тела).
ID товара
2886303
Издательство
Ленанд
Год издания
2021
ISBN
978-5-9710-8873-8
Количество страниц
400
Размер
2.2x15.3x21.6
Тип обложки
Твёрдый переплёт
Вес, г
500
1 779 ₽
+ до 266 бонусов
Осталось мало
В магазины сети, бесплатно
СегодняАдреса магазинов
Другие способы доставки
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
3.0
Второй том предлагаемого цикла работ «Интегрируемые динамические системы с диссипацией» представляет собой обзор по полученным ранее, а также новым случаям интегрируемости в динамике закрепленного двумерного, трехмерного, четырехмерного и многомерного твердого тела, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами с переменной диссипацией. В первом томе рассматривались задачи, порожденные движением свободного твердого тела разной размерности.
Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике закрепленного твердого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций. Получены некоторые обобщения на условия интегрируемости более общих классов неконсервативных динамических систем (динамика четырехмерного и многомерного твердого тела).
Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией, означающей, что в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и ее рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике закрепленного твердого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций. Получены некоторые обобщения на условия интегрируемости более общих классов неконсервативных динамических систем (динамика четырехмерного и многомерного твердого тела).