Колебания и фракционный анализ

-31%

Описание и характеристики

В пособии излагаются классические и новые подходы, задачи и методы теории колебаний, а также способы построения простых математических моделей для исследования выбранных свойств динамики разных систем. Обсуждаются подходы качественной теории дифференциальных уравнений: для систем второго порядка - методы исследования фазовой плоскости, условия грубости, ряд типичных бифуркаций положений равновесия, предельных циклов и законы их совместного существования; для систем произвольного порядка - условие консервативности и способы изучения поведения решений вблизи периодических решений. Рассматриваются общие свойства линейных систем, изучается ряд вопросов теории устойчивости движения и теории малых колебаний. Излагается теория систем с периодическими коэффициентами и ее связь с теорией устойчивости периодических траекторий. Представлены приближенные методы исследования уравнений динамики, опирающиеся на методы теории размерностей и подобия и методы теории возмущений, которые позволяют формализовать способы упрощения этих уравнений, оценить возможности их применения и выяснить, как их следует изменить в случае, когда они теряют смысл. Приведен ряд примеров возникновения динамического хаоса в детерминированных системах. Общие результаты проиллюстрированы задачами механики и других областей знания.
ID товара 2979951
Издательство ИКИ
Год издания
ISBN 978-5-4344-0879-0
Количество страниц 412
Размер 3x15x20.8
Тип обложки Твёрдый переплёт
Вес, г 620
1 054 ₽
1 519 ₽
+ до 158 бонусов
Осталось мало

В магазины сети, бесплатно

СегодняАдреса магазинов

Другие способы доставки
2

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В пособии излагаются классические и новые подходы, задачи и методы теории колебаний, а также способы построения простых математических моделей для исследования выбранных свойств динамики разных систем. Обсуждаются подходы качественной теории дифференциальных уравнений: для систем второго порядка - методы исследования фазовой плоскости, условия грубости, ряд типичных бифуркаций положений равновесия, предельных циклов и законы их совместного существования; для систем произвольного порядка - условие консервативности и способы изучения поведения решений вблизи периодических решений. Рассматриваются общие свойства линейных систем, изучается ряд вопросов теории устойчивости движения и теории малых колебаний. Излагается теория систем с периодическими коэффициентами и ее связь с теорией устойчивости периодических траекторий. Представлены приближенные методы исследования уравнений динамики, опирающиеся на методы теории размерностей и подобия и методы теории возмущений, которые позволяют формализовать способы упрощения этих уравнений, оценить возможности их применения и выяснить, как их следует изменить в случае, когда они теряют смысл. Приведен ряд примеров возникновения динамического хаоса в детерминированных системах. Общие результаты проиллюстрированы задачами механики и других областей знания.