Континуальные интегралы
Этот товар закончился.
Описание и характеристики
ID товара
2780518
Издательство
Ленанд
Серия
Классический учебник МГУ
Год издания
2020
ISBN
978-5-9710-7525-7
Количество страниц
334
Размер
1.5x14x21.1
Тип обложки
Мягкий переплёт
Вес, г
360
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В книге рассматриваются математические задачи, связанные с одним из центральных объектов математической физики и бесконечномерного анализа - континуальным, или функциональным, интегралом. Его наиболее важный для приложений в квантовой теории вариант носит название интеграла Фейнмана; именно ему и уделяется основное внимание в книге. Континуальные интегралы - это интегралы по бесконечномерным пространствах функций; их значение определяется тем, что они позволяют представить в явном виде решения различных задач, связанных с дифференциальными операторами с частными производными и, более общим образом, с псевдодифференциальными операторами. С помощью континуальных интегралов выражаются ядро разрешающего оператора задачи Коши для уравнений типа Шредингера и теплопроводности как в конечномерном, так и в бесконечномерном случае (соответствующие формулы известны как формулы Фейнмана-Каца), регуляризованные следы дифференциальных операторов и регуляризованные определители экспонент от них, математические ожидания неограниченных случайных операторов, ряд объектов, возникающих в теории представлений групп. Эффективность подхода, использующего континуальные интегралы, объясняется сходством их формальных свойств со свойствами обычных интегралов по счетно аддитивной мере, что позволяет, распространяя на континуальные интегралы методы классического анализа, получить гибкий формальный аппарат. Книга написана на основе курсов, неоднократно читавшихся авторами на механико-математическом факультете МГУ имени М.В. Ломоносова. Для студентов и аспирантов математических и физических факультетов университетов, а также для научных работников.