Machine Learning 2-ed
Этот товар закончился.
Описание и характеристики
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition--as well as some we don't yet use everyday, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias.
Alpaydin, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.
ID товара
2933494
Издательство
Random House
Год издания
2021
ISBN
978-0-262-54252-4
Количество страниц
256
Размер
1.5x12.6x17.7
Тип обложки
Мягкий переплёт
Вес, г
250
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
4.0
Вячеслав
10.10.2022
Machine Learning 2-ed
Книга подойдет ТОЛЬКО для ввода в тему машинного обучения, так как не имеет научно-прикладного характера, а лишь рассказывает обо всем в общих чертах
A concise overview of machine learning--computer programs that learn from data--the basis of such applications as voice recognition and driverless cars.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition--as well as some we don't yet use everyday, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias.
Alpaydin, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition--as well as some we don't yet use everyday, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias.
Alpaydin, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.