Машинное обучение. Портфолио реальных проектов
-22%
Описание и характеристики
Автор описывает реалистичные, практичные сценарии машинного обучения, а также предельно понятно раскрывает ключевые концепции. Вы разберете интересные проекты, такие как сервис прогнозирования цен на автомобили с использованием линейной регрессии и сервис прогнозирования оттока клиентов. Вы выйдете за рамки алгоритмов и изучите важные техники, например развертывание приложений в бессерверных системах и запуск моделей с помощью Kubernetes и Kubeflow. Пришло время закатать рукава и прокачать свои навыки в области машинного обучения!
5 причин купить эту книгу:
1. Чтобы освоить машинное обучение, вам нужны отличные примеры, четкие объяснения и много практики. В книге все это есть!
2. Вы научитесь собирать и очищать данные для обучения моделей.
3. Освоите развертывание модели МО в полноценных производственных средах.
4. Узнаете, как использовать популярные инструменты Python, включая NumPy, Scikit-Learn и TensorFlow.
5. Предварительные знания в области машинного обучения не требуются!
ID товара
2968898
Издательство
Питер
Серия
Библиотека программиста
Год издания
2023
ISBN
978-5-4461-1978-3
Количество страниц
496
Размер
2.6x16.4x23
Тип обложки
Мягкий переплёт
Тираж
700
Вес, г
770
Возрастные ограничения
16+
2 789 ₽
3 564 ₽
+ до 418 бонусов
Последний экземпляр
В магазины сети, бесплатно
СегодняАдреса магазинов
Другие способы доставки
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
Изучите ключевые концепции машинного обучения‚ работая над реальными проектами! Машинное обучение — то, что поможет вам в анализе поведения клиентов, прогнозировании тенденций движения цен, оценке рисков и многом другом. Чтобы освоить машинное обучение, вам нужны отличные примеры, четкие объяснения и много практики. В книге все это есть!
Автор описывает реалистичные, практичные сценарии машинного обучения, а также предельно понятно раскрывает ключевые концепции. Вы разберете интересные проекты, такие как сервис прогнозирования цен на автомобили с использованием линейной регрессии и сервис прогнозирования оттока клиентов. Вы выйдете за рамки алгоритмов и изучите важные техники, например развертывание приложений в бессерверных системах и запуск моделей с помощью Kubernetes и Kubeflow. Пришло время закатать рукава и прокачать свои навыки в области машинного обучения!
Автор описывает реалистичные, практичные сценарии машинного обучения, а также предельно понятно раскрывает ключевые концепции. Вы разберете интересные проекты, такие как сервис прогнозирования цен на автомобили с использованием линейной регрессии и сервис прогнозирования оттока клиентов. Вы выйдете за рамки алгоритмов и изучите важные техники, например развертывание приложений в бессерверных системах и запуск моделей с помощью Kubernetes и Kubeflow. Пришло время закатать рукава и прокачать свои навыки в области машинного обучения!