Нейронные сети и глубокое обучение. Учебный курс

Этот товар закончился.

Описание и характеристики

В книге рассматриваются как классические, так и современные модели глубокого обучения. Главы книги можно разбить на три группы.
- Основы нейронных сетей. Суть многих традиционных моделей машинного обучения можно понять, рассматривая их как частные случаи нейронных сетей. В первых двух главах основной упор сделан на понимании взаимосвязи традиционного машинного обучения и нейронных сетей. Будет показано, что метод опорных векторов, линейная и логистическая регрессия, сингулярное разложение, факторизация матриц и рекомендательные системы являются именно такими частными случаями. Наряду с ними рассматриваются и такие сравнительно новые методы конструирования признаков, как word2vec.
- Фундаментальные понятия нейронных сетей. Главы 3 и 4 посвящены подробному обсуждению процессов тренировки и регуляризации нейронных сетей. В главах 5 и 6 рассмотрены сети радиально-базисных функций (RBF) и ограниченные машины Больцмана.
- Дополнительные вопросы нейронных сетей. В главах 7 и 8 обсуждаются рекуррентные и сверточные нейронные сети. Главы 9 и 10 посвящены более сложным темам, таким как глубокое обучение с подкреплением, нейронные машины Тьюринга, самоорганизующиеся карты Кохонена и генеративно-состязательные сети.
Книга предназначена для студентов старших курсов, исследователей и специалистов-практиков. Там, где это возможно, автор обращает особое внимание на прикладные аспекты использования каждого класса методов.
ID товара 2779207
Издательство Вильямс
Год издания
ISBN 978-5-907203-01-3
Количество страниц 752
Размер 3.7x17.2x24.2
Тип обложки Твёрдый переплёт
Вес, г 1110

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
4.0
5 оценок
0
1
1
0
3
В книге рассматриваются как классические, так и современные модели глубокого обучения. Главы книги можно разбить на три группы.
- Основы нейронных сетей. Суть многих традиционных моделей машинного обучения можно понять, рассматривая их как частные случаи нейронных сетей. В первых двух главах основной упор сделан на понимании взаимосвязи традиционного машинного обучения и нейронных сетей. Будет показано, что метод опорных векторов, линейная и логистическая регрессия, сингулярное разложение, факторизация матриц и рекомендательные системы являются именно такими частными случаями. Наряду с ними рассматриваются и такие сравнительно новые методы конструирования признаков, как word2vec.
- Фундаментальные понятия нейронных сетей. Главы 3 и 4 посвящены подробному обсуждению процессов тренировки и регуляризации нейронных сетей. В главах 5 и 6 рассмотрены сети радиально-базисных функций (RBF) и ограниченные машины Больцмана.
- Дополнительные вопросы нейронных сетей. В главах 7 и 8 обсуждаются рекуррентные и сверточные нейронные сети. Главы 9 и 10 посвящены более сложным темам, таким как глубокое обучение с подкреплением, нейронные машины Тьюринга, самоорганизующиеся карты Кохонена и генеративно-состязательные сети.
Книга предназначена для студентов старших курсов, исследователей и специалистов-практиков. Там, где это возможно, автор обращает особое внимание на прикладные аспекты использования каждого класса методов.