Обучение с подкреплением на PyTorch: сборник рецептов. Свыше 60 рецептов проектирования, разработки и развертывания самообучающихся моделей на Python
-30%
Описание и характеристики
Вы научитесь использовать алгоритм «многоруких бандитов» и аппроксимацию функций; узнаете, как победить в играх Atari с помощью глубоких Q-сетей и как эффективно реализовать метод градиента стратегии; увидите, как применить метод ОП к игре в блэкджек, к окружающим средам в сеточном мире, к оптимизации рекламы в интернете и к игре Flappy Bird.
Издание предназначено для специалистов по искусственному интеллекту, которым требуется помощь в решении задач ОП. Для изучения материала необходимо знакомство с концепциями машинного обучения; опыт работы с библиотекой PyTorch необязателен, но желателен.
ID товара
2805035
Издательство
ДМК Пресс
Год издания
2020
ISBN
978-5-97060-853-1, 978-5-9706-0853-1
Количество страниц
282
Размер
1.7x17x24
Тип обложки
Твёрдый переплёт
Тираж
200
Вес, г
579
Возрастные ограничения
6+
1 980 ₽
2 829 ₽
+ до 297 бонусов
Осталось мало
В магазины сети, бесплатно
СегодняАдреса магазинов
Другие способы доставки
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
2.8
Библиотека PyTorch выходит на передовые позиции в качестве средства обучения с подкреплением (ОП) благодаря эффективности и простоте ее использования. Эта книга организована как справочник по работе с PyTorch, охватывающий широкий круг тем – от самых азов (настройка рабочей среды) до практических задач (рассмотрение ОП на конкретных примерах).
Вы научитесь использовать алгоритм «многоруких бандитов» и аппроксимацию функций; узнаете, как победить в играх Atari с помощью глубоких Q-сетей и как эффективно реализовать метод градиента стратегии; увидите, как применить метод ОП к игре в блэкджек, к окружающим средам в сеточном мире, к оптимизации рекламы в интернете и к игре Flappy Bird.
Издание предназначено для специалистов по искусственному интеллекту, которым требуется помощь в решении задач ОП. Для изучения материала необходимо знакомство с концепциями машинного обучения; опыт работы с библиотекой PyTorch необязателен, но желателен.
Вы научитесь использовать алгоритм «многоруких бандитов» и аппроксимацию функций; узнаете, как победить в играх Atari с помощью глубоких Q-сетей и как эффективно реализовать метод градиента стратегии; увидите, как применить метод ОП к игре в блэкджек, к окружающим средам в сеточном мире, к оптимизации рекламы в интернете и к игре Flappy Bird.
Издание предназначено для специалистов по искусственному интеллекту, которым требуется помощь в решении задач ОП. Для изучения материала необходимо знакомство с концепциями машинного обучения; опыт работы с библиотекой PyTorch необязателен, но желателен.