Особенности дифференцируемых отображений 3-е изд. стер.

Описание и характеристики

Теория особенностей дифференцируемых отображений — бурно развивающаяся область современной математики, являющаяся грандиозным обобщением исследования функций на максимум и минимум и имеющая многочисленные приложения в математике, естествознании и технике (так называемые теории бифуркаций и катастроф). Первая часть книги посвящена теории устойчивости гладких отображений, критическим точкам гладких функций, особенностям каустик и волновых фронтов в геометрической оптике. Во второй части рассматриваются семейства комплексных гиперповерхностей, асимптотики интегралов многомерных методов стационарной фазы и перевала, приложения методов алгебраической геометрии к исследованию критических точек функций.Для математиков — научных работников, аспирантов, студентов, а также для специалистов в области механики, физики, техники и других наук, интересующихся теорией особенностей дифференцируемых отображений.
ID товара 2828130
Издательство МЦНМО
Год издания
ISBN 978-5-94057-456-9
Количество страниц 672
Размер 3.4x14.7x22
Тип обложки Твёрдый переплёт
Тираж 10000
Вес, г 750
729 ₽
+ до 109 бонусов
Последний экземпляр

В магазины сети, бесплатно

ЗавтраАдреса магазинов

Другие способы доставки
1

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
Теория особенностей дифференцируемых отображений — бурно развивающаяся область современной математики, являющаяся грандиозным обобщением исследования функций на максимум и минимум и имеющая многочисленные приложения в математике, естествознании и технике (так называемые теории бифуркаций и катастроф). Первая часть книги посвящена теории устойчивости гладких отображений, критическим точкам гладких функций, особенностям каустик и волновых фронтов в геометрической оптике. Во второй части рассматриваются семейства комплексных гиперповерхностей, асимптотики интегралов многомерных методов стационарной фазы и перевала, приложения методов алгебраической геометрии к исследованию критических точек функций.Для математиков — научных работников, аспирантов, студентов, а также для специалистов в области механики, физики, техники и других наук, интересующихся теорией особенностей дифференцируемых отображений.