Практическая статистика для специалистов Data Science. 50+ важнейших понятий с использованием R и Python
-32%
Описание и характеристики
С другой стороны, многие ресурсы, посвященные науке о данных, содержат статистические методы, но не раскрывают перспективы применения этих методов достаточно глубоко.
Предлагаемая книга, написанная доступным языком, устраняет этот пробел. Если вы немного знакомы с языком программирования R и математической статистикой, то легко освоите материал и существенно повысите свой профессиональный уровень
Во второе издание включены примеры на языке Python, что расширяет практическое применение книги.
Прочитав эту книгу, вы узнаете:
Почему разведывательный анализ данных является ключевым предварительным шагом в науке о данных
Как случайная выборка может уменьшить смещение и привести к более высококачественному набору данных, даже в условиях больших данных
Как принципы планирования эксперимента помогают получить наиболее полные ответы на вопросы
Как использовать регрессию для оценки результатов и выявления аномалий
ID товара
2856868
Издательство
БХВ
Год издания
2021
ISBN
978-5-9775-6705-3
Количество страниц
352
Размер
1.4x16.4x23
Тип обложки
Мягкий переплёт
Тираж
1300
Вес, г
419
921 ₽
1 359 ₽
+ до 138 бонусов
В наличии
В магазины сети, бесплатно
СегодняАдреса магазинов
Другие способы доставки
от 1 299 ₽ сегодня
Отзывы
15 бонусов
за полезный отзыв длиной от 300 символов
15 бонусов
если купили в интернет-магазине «Читай-город»
4.0
Дмитрий
20.01.2024
Отличная книга. Если читать в оригинале. В переводе много ошибок, к сожалению... У меня были знания из области, по которой написана данная книга, поэтому увидеть большинство ошибок не составило труда. Прочитал от корки до корки переведённый вариант, иногда сравнивая с оригиналом некоторые моменты. Однозначно стоит прочитать.
Плюсы
Отлично собранный материал
Минусы
Ошибки перевода
Статистические методы являются ключевой частью науки о данных. Однако очень немногие аналитики данных обучены статистике должным образом, поскольку нет книг по статистике, написанных специально для аналитиков данных.
С другой стороны, многие ресурсы, посвященные науке о данных, содержат статистические методы, но не раскрывают перспективы применения этих методов достаточно глубоко.
Предлагаемая книга, написанная доступным языком, устраняет этот пробел. Если вы немного знакомы с языком программирования R и математической статистикой, то легко освоите материал и существенно повысите свой профессиональный уровень
Во второе издание включены примеры на языке Python, что расширяет практическое применение книги.
Прочитав эту книгу, вы узнаете:
Почему разведывательный анализ данных является ключевым предварительным шагом в науке о данных
Как случайная выборка может уменьшить смещение и привести к более высококачественному набору данных, даже в условиях больших данных
Как принципы планирования эксперимента помогают получить наиболее полные ответы на вопросы
Как использовать регрессию для оценки результатов и выявления аномалий
С другой стороны, многие ресурсы, посвященные науке о данных, содержат статистические методы, но не раскрывают перспективы применения этих методов достаточно глубоко.
Предлагаемая книга, написанная доступным языком, устраняет этот пробел. Если вы немного знакомы с языком программирования R и математической статистикой, то легко освоите материал и существенно повысите свой профессиональный уровень
Во второе издание включены примеры на языке Python, что расширяет практическое применение книги.
Прочитав эту книгу, вы узнаете:
Почему разведывательный анализ данных является ключевым предварительным шагом в науке о данных
Как случайная выборка может уменьшить смещение и привести к более высококачественному набору данных, даже в условиях больших данных
Как принципы планирования эксперимента помогают получить наиболее полные ответы на вопросы
Как использовать регрессию для оценки результатов и выявления аномалий