Практикум по математическим основам теории систем. Учебное пособие 1-е изд.

Этот товар закончился.

Описание и характеристики

Изложены методы решения задач преобразования четких и нечетких множеств, бинарных отношений, исчисления высказываний и булевой алгебры. Приведены примеры и задачи минимизации формул алгебры логики, описания графов и основных операций над ними. Описаны алгоритмы отыскания кратчайших путей и максимальных потоков, ком-бинаторных соотношений и эффективного кодирования. Изложены основные задачи линейных векторных пространств, функциональных преобразований Фурье, Лапласа и дискретного Z-преобразования. Рассмотрены задачи анализа и синтеза конечных автоматов, описания и преобразования моделей линейных и нелинейных, непрерывных и дискретных динамических систем. Приведены методы и алгоритмы решения задач конечномерной оптимизации функций, вариационные методы решения экстремальных задач, принцип максимума и метод динамического программирования для решения задач оптимального управления.
ID товара 2654436
Издательство Лань
Год издания
ISBN 978-5-8114-1411-6
Размер 2x17.1x24.4
Вес, г 629

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
Изложены методы решения задач преобразования четких и нечетких множеств, бинарных отношений, исчисления высказываний и булевой алгебры. Приведены примеры и задачи минимизации формул алгебры логики, описания графов и основных операций над ними. Описаны алгоритмы отыскания кратчайших путей и максимальных потоков, ком-бинаторных соотношений и эффективного кодирования. Изложены основные задачи линейных векторных пространств, функциональных преобразований Фурье, Лапласа и дискретного Z-преобразования. Рассмотрены задачи анализа и синтеза конечных автоматов, описания и преобразования моделей линейных и нелинейных, непрерывных и дискретных динамических систем. Приведены методы и алгоритмы решения задач конечномерной оптимизации функций, вариационные методы решения экстремальных задач, принцип максимума и метод динамического программирования для решения задач оптимального управления.