PYTHON и анализ данных

Описание и характеристики

Перед вами авторитетный справочник по переформатированию, очистке и обработке наборов данных на Python. Третье издание, переработанное с учетом версий Python 3.10 и pandas 1.4, содержит практические примеры, демонстрирующие эффективное решение широкого круга задач анализа данных. По ходу дела вы узнаете о последних версиях pandas, NumPy и Jupyter.
Книга принадлежит перу Уэса Маккинни, создателя библиотеки pandas, и может служить практическим современным руководством по инструментарию науки о данных на Python. Она идеально подойдет как аналитикам, только начинающим осваивать Python, так и программистам на Python, еще незнакомым с наукой о данных и научными приложениями. Файлы данных и прочие материалы к книге находятся в репозитории на GitHub и на сайте издательства dmkpress.com.
ID товара 2971389
Издательство ДМК Пресс
Год издания
ISBN 978-5-93700-174-0
Количество страниц 536
Размер 3.3x17.3x24.3
Тип обложки Твёрдый переплёт
Тираж 200
Вес, г 1000

Только в магазинах

Наличие в магазинах
за 4 199 ₽
Москва Нет в наличии
Есть в других городах, 1 магазин 
Посмотреть наличие

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
4.1
7 оценок
0
1
1
1
4
Перед вами авторитетный справочник по переформатированию, очистке и обработке наборов данных на Python. Третье издание, переработанное с учетом версий Python 3.10 и pandas 1.4, содержит практические примеры, демонстрирующие эффективное решение широкого круга задач анализа данных. По ходу дела вы узнаете о последних версиях pandas, NumPy и Jupyter.
Книга принадлежит перу Уэса Маккинни, создателя библиотеки pandas, и может служить практическим современным руководством по инструментарию науки о данных на Python. Она идеально подойдет как аналитикам, только начинающим осваивать Python, так и программистам на Python, еще незнакомым с наукой о данных и научными приложениями. Файлы данных и прочие материалы к книге находятся в репозитории на GitHub и на сайте издательства dmkpress.com.