Распознавание образов: Построение и обучение вероятностных моделей. Учебное пособие

Этот товар закончился.

Описание и характеристики

В книге рассматриваются несколько практически важных примеров решения задач статистического обучения, в которых пространства признаков и ответов и обучающие наборы устроены слишком сложно и нерегулярно, так что стандартные методы статистического обучения в них нельзя применить буквально, но можно применять после построения адекватных вероятностных моделей. . .Данная работа является продолжением книги А.Б.Меркова "Распознавание образов: Введение в методы статистического обучения" (М.: URSS, 2011). Она выдержана в том же стиле. Значительная часть описываемых методов строго обоснована: простые технические детали доказательств сформулированы и предложены в качестве упражнений, более сложные, но не слишком громоздкие доказательства предъявлены. Ради компактности изложения количество примеров минимизировано, зато приводятся многочисленные литературные ссылки, в том числе и ссылки на доступные электронные копии статей
ID товара 2750244
Издательство Ленанд
Год издания
ISBN 978-5-9710-6871-6
Количество страниц 240
Размер 1.5x15x22
Тип обложки Твёрдый переплёт
Вес, г 389

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В книге рассматриваются несколько практически важных примеров решения задач статистического обучения, в которых пространства признаков и ответов и обучающие наборы устроены слишком сложно и нерегулярно, так что стандартные методы статистического обучения в них нельзя применить буквально, но можно применять после построения адекватных вероятностных моделей. . .Данная работа является продолжением книги А.Б.Меркова "Распознавание образов: Введение в методы статистического обучения" (М.: URSS, 2011). Она выдержана в том же стиле. Значительная часть описываемых методов строго обоснована: простые технические детали доказательств сформулированы и предложены в качестве упражнений, более сложные, но не слишком громоздкие доказательства предъявлены. Ради компактности изложения количество примеров минимизировано, зато приводятся многочисленные литературные ссылки, в том числе и ссылки на доступные электронные копии статей