Расширенная аналитика с PySpark

-34%

Описание и характеристики

Книга посвящена практическим методам анализа больших объемов данных с использованием языка Python и фреймворка Spark, она знакомит с моделью программирования Spark и основами системы с открытым исходным кодом PySpark. Каждая глава описывает отдельный аспект анализа данных, показаны основы обработки данных в PySpark и Python на примере очистки данных, подробно освещается машинное обучение с помощью Spark. Книга поможет читателю понять, как устроен и работает весь конвейер PySpark для комплексной аналитики больших наборов данных: от создания и оценки моделей до очистки, предварительной обработки и исследования данных с особым акцентом на производственные приложения. Отдельные главы посвящены обработке изображений и библиотеке Spark NLP.
ID товара 2972710
Издательство BHV-CПб
Год издания
ISBN 978-5-9775-1770-6
Количество страниц 224
Размер 1.2x16.7x23.3
Тип обложки Мягкий переплёт
Тираж 1000
Вес, г 300
726 ₽
1 099 ₽
+ до 108 бонусов
В наличии

В магазины сети, бесплатно

СегодняАдреса магазинов

Другие способы доставки
10
от 1 049 ₽ сегодня
В наличии в 9 магазинах 
Забрать за 1 час
Экспресс-доставка, 900 ₽

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
Книга посвящена практическим методам анализа больших объемов данных с использованием языка Python и фреймворка Spark, она знакомит с моделью программирования Spark и основами системы с открытым исходным кодом PySpark. Каждая глава описывает отдельный аспект анализа данных, показаны основы обработки данных в PySpark и Python на примере очистки данных, подробно освещается машинное обучение с помощью Spark. Книга поможет читателю понять, как устроен и работает весь конвейер PySpark для комплексной аналитики больших наборов данных: от создания и оценки моделей до очистки, предварительной обработки и исследования данных с особым акцентом на производственные приложения. Отдельные главы посвящены обработке изображений и библиотеке Spark NLP.