Стабилизация программных движений при полной и неполной обратной связи: Уч.пособие., 2-е изд., стер.

Этот товар закончился.

Описание и характеристики

В данном учебном пособии приводятся основные понятия и определения теории устойчивости систем обыкновенных дифференциальных уравнений, а также рассмотрены вопросы стабилизации линейных стационарных систем в пространстве состояний в случае полной и неполной обратной связи. Предложен общий алгоритм решения задачи стабилизации. Рассмотрены методы построения асимптотических идентификаторов разных типов, применяемых для оценки фазового состояния управляемой системы в режиме стабилизации в случае неполной обратной связи. Конкретные реализации алгоритмов построения стабилизирующих управлений для различных частных случаев проиллюстрированы большим количеством примеров.
Книга разработана в рамках курсов «Теория управления», «Устойчивость движения» факультета прикладной математики — процессов управления СПбГУ и предназначена для студентов вузов, обучающихся по направлениям «Прикладные математика и физика», «Прикладная математика и информатика», а также другим математическим и естественнонаучным направлениям и специальностям в области техники и технологии. Она также может быть полезна научным работникам, специализирующимся в области математического моделирования, теории управления и теории устойчивости.
ID товара 2500862
Издательство Лань
Год издания
ISBN 978-5-8114-2023-0
Количество страниц 128
Размер 0.6x12.8x20
Тип обложки Мягкий переплёт
Тираж 100
Вес, г 119

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В данном учебном пособии приводятся основные понятия и определения теории устойчивости систем обыкновенных дифференциальных уравнений, а также рассмотрены вопросы стабилизации линейных стационарных систем в пространстве состояний в случае полной и неполной обратной связи. Предложен общий алгоритм решения задачи стабилизации. Рассмотрены методы построения асимптотических идентификаторов разных типов, применяемых для оценки фазового состояния управляемой системы в режиме стабилизации в случае неполной обратной связи. Конкретные реализации алгоритмов построения стабилизирующих управлений для различных частных случаев проиллюстрированы большим количеством примеров.
Книга разработана в рамках курсов «Теория управления», «Устойчивость движения» факультета прикладной математики — процессов управления СПбГУ и предназначена для студентов вузов, обучающихся по направлениям «Прикладные математика и физика», «Прикладная математика и информатика», а также другим математическим и естественнонаучным направлениям и специальностям в области техники и технологии. Она также может быть полезна научным работникам, специализирующимся в области математического моделирования, теории управления и теории устойчивости.