Субдифференциальное исчесление. Теория и приложения

Этот товар закончился.

Описание и характеристики

В монографии изложены основные результаты нового раздела функционального анализа - субдифференциального исчисления. Широко представлен современный инструментарий этой области: техника пространств Канторовича, методы булевозначного и инфинитезимального анализа. Наряду с аналитическими вопросами большое место уделено технике вывода критериев оптимальности для выпуклых экстремальных задач, включая важные для приложений вопросы характеризации приближений к оптимальным решениям и значениям.
Впервые книга вышла в 1992 г. в Сибирском отделении издательства "Наука". В 1995 г. издательство Kluwer Academic Publishers выпустило в свет расширенный перевод книги, который и стал основой для настоящего издания.
Для математиков, интересующихся современным аппаратом негладкого анализа и его приложениями.
ID товара 2641953
Издательство Наука
Год издания
ISBN 5020340790, 978-5-02-034079-4
Количество страниц 560
Размер 2.7x17x24.3
Тип обложки Твёрдый переплёт
Вес, г 839

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В монографии изложены основные результаты нового раздела функционального анализа - субдифференциального исчисления. Широко представлен современный инструментарий этой области: техника пространств Канторовича, методы булевозначного и инфинитезимального анализа. Наряду с аналитическими вопросами большое место уделено технике вывода критериев оптимальности для выпуклых экстремальных задач, включая важные для приложений вопросы характеризации приближений к оптимальным решениям и значениям.
Впервые книга вышла в 1992 г. в Сибирском отделении издательства "Наука". В 1995 г. издательство Kluwer Academic Publishers выпустило в свет расширенный перевод книги, который и стал основой для настоящего издания.
Для математиков, интересующихся современным аппаратом негладкого анализа и его приложениями.