Тренинг гибкости мозга

Этот товар закончился.

Описание и характеристики

В книге рассматриваются вычислительные методы, наиболее часто используемые в практике прикладных и научно-технических расчетов: методы решения задач линейной алгебры, нелинейных уравнений, проблемы собственных значений, методы теории приближения функций, численное дифференцирование и интегрирование, поиск экстремумов функций, решение обыкновенных дифференциальных уравнений, численное решение интегральных уравнений, линейная и нелинейная задачи метода наименьших квадратов, метод сопряженных градиентов. Значительное внимание уделяется особенностям реализации вычислительных алгоритмов на компьютере и оценке достоверности полученных результатов. Имеется большое количество примеров и геометрических иллюстраций. Даются сведения о стандарте IEEE, о сингулярном разложении матрицы и его применении для решения переопределенных систем, о двухслойных итерационных методах, о квадратурных формулах Гаусса—Кронрода, о методах Рунге—Кутты—Фельберга. .Учебное пособие предназначено для студентов всех направлений подготовки, обучающихся в классических и технических университетах и изучающих вычислительные методы, будет полезно аспирантам, инженерам и научным работникам, применяющим вычислительные методы в своих исследованиях. . . .
ID товара 2405405
Издательство АСТ
Издательский бренд Кладезь
Год издания
ISBN 978-5-17-080877-9
Количество страниц 176
Размер 1.2x13.4x19.6
Тип обложки Твёрдый переплёт
Тираж 2000
Вес, г 189
Возрастные ограничения 12+

Отзывы

15 бонусов

за полезный отзыв длиной от 300 символов

15 бонусов

если купили в интернет-магазине «Читай-город»

Полные правила начисления бонусов за отзывы
Оставьте отзыв и получите бонусы
Оставьте первый отзыв и получите за него бонусы.
Это поможет другим покупателям сделать правильный выбор.
В книге рассматриваются вычислительные методы, наиболее часто используемые в практике прикладных и научно-технических расчетов: методы решения задач линейной алгебры, нелинейных уравнений, проблемы собственных значений, методы теории приближения функций, численное дифференцирование и интегрирование, поиск экстремумов функций, решение обыкновенных дифференциальных уравнений, численное решение интегральных уравнений, линейная и нелинейная задачи метода наименьших квадратов, метод сопряженных градиентов. Значительное внимание уделяется особенностям реализации вычислительных алгоритмов на компьютере и оценке достоверности полученных результатов. Имеется большое количество примеров и геометрических иллюстраций. Даются сведения о стандарте IEEE, о сингулярном разложении матрицы и его применении для решения переопределенных систем, о двухслойных итерационных методах, о квадратурных формулах Гаусса—Кронрода, о методах Рунге—Кутты—Фельберга. .Учебное пособие предназначено для студентов всех направлений подготовки, обучающихся в классических и технических университетах и изучающих вычислительные методы, будет полезно аспирантам, инженерам и научным работникам, применяющим вычислительные методы в своих исследованиях. . . .